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1. OVERVIEW

1.1 Objectives

The objectives of this two-year project were:

* Assemble data sets to be used to test and evaluate the performance of
neural networks for automated processing and interpretation of
seismic data.

* Evaluate the results of the neural network applications in the context
of monitoring nuclear explosion testing.

One of the goals of DARPA's Artificial Neural Network Technology (ANNT) pro-
gram is to determine whether or not neural networks can improve upon current
methods for seismic monitoring of underground nuclear explosion testing. DARPA's
Intelligent Monitoring System (IMS) is a prototype surveillance system for developing
and demonstrating new technology for regional monitoring of small or clandestine
underground nuclear tests. Therefore, to meet the goal of the ANNT program, the
neural network technology applications were targeted for specialized processing tasks
of IMS. Our first objective was to build relevant data sets to be used to test and evalu-
ate the performance of the neural networks. These data were recorded by the high-
frequency arrays used in IMS. The work performed to achieve this objective is
described in detail in Volume I of our annual report [Sereno and Patnaik, 1991] and in
Volume I of this final report [Sereno, et al., 19921. These data were to be used to
develop and train neural networks to perform specialized seismic data processing and
interpretation tasks (e.g. automated phase identification, onset time estimation, phase
association, typical and atypical event recognition, and event identification), and to test
the generality and adaptability of neural networks.

To achieve our second objective, we integrated two neural network modules into
the IMS, and tested them under simulated operational conditions. One of these was
developed by MIT/Lincoln Laboratory for regional seismic phase identification (e.g.,
Pn, Pg, Sn, Lg, Rg). This module is described by Lacoss, et al. [1990). We
developed the other neural network module which performs initial -eismic phase
identification (P or S) from 3-component seismic data. This is described in Volume 11
of our annual report [Patnaik and Sereno, 1991). This final report (Volume 1I)
describes the results of our simulated operational testing. In particular, we report on
the improvement in the final event bulletin that is obtained by using neural networks
for automated seismic phase identification. Also included are the design and prelim-
inary results of a neural network technique for identifying regional seismic events on
the basis of coda shape.

S . . . .. . .. . .... ... ... ... . . .. . ilIII



1.2 Summary of Neural Network Applications

1.2.1 Initial Phase Identification

An initial phase identification (P or S) neural network module was developed
based on polarization and context data from 3-component stations, and it was imple-
mented in IMS [Patnaik and Sereno, 19911. For operational testing and evaluation, the
IMS was applied to a 6-week period of continuous data from the IRIS/IDA stations in
the former Soviet Union [Swanger, et al, 1992]. This test was done twice; once with
the rule-based method for initial phase identification, and once using the trained neural
networks. The neural networks performed 3-6% better than the current IMS rules, and
the improvement was greater for P-phases than it was for S-phases (about 67% of the
detections in the test data set were P-phases). Although this technique works best for
site-specific applications, so far we have only trained separate neural networks for the
stations AAK and GAR. We did not have enough analyst-reviewed data from the sta-
tions OBN, TLY, ARU, and KIV to develop stable station-specific neural network
weights. Therefore, for these stations we used average weights that were derived from
data recorded by all 6 IRIS/IDA stations.

The improvement realized in the phase identification accuracy also had a
significant impact on the final automated bulletin (particularly on the number of events
missed by the automated processing). The analyst accepted more of the events formed
by the automated system when the neural network was used for initial phase
identification, and fewer events were missed by the automated processing. For exam-
ple, approximately 10 more analyst-verified events per week were formed when the
neural network was used for initial phase identification than when the current IMS
rule-based system was used. Larger gains ame expected once enough data are available
at all IRIS/IDA stations to derive a full set of station-specific weights. Also, the
analysis procedures only included events recorded at >2 stations, so the test database is
biased towards high snr data from the stations AAK and GAR (92% of the test data
have snr >2). The improvement offered by the neural networks is greater for the
other stations, so larger gains should be seen for routine analysis of data from all sta-
tions.

The key advantages of the neural network approach to automated initial
identification of seismic phases recorded by 3-component stations are:

* Better performance than competing technologies. The neural network consistently
performed 3-6% better than both the current IMS rule-based system, and a linear
multi-variate statistical technique [Patnaik and Sereno, 19911.

9 Extensibility. The neural network approach is easily extended to include new
features, which could be extremely difficult for a conventional rule-based system.
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* Adaptability. The neural network is easily adapted to data from new stations. For
example, the identification accuracy (P or 5) is 75-85% without retraining (e.g.,
using weights derived with data from a different station), and it is typically >95%
after retraining with data from the same station. Enough data can be accumulated
for retraining within a few weeks of continuous station operation, and training
takes <30 minutes on a Sun Sparc Station.

* Amenable to automated learning techniques. The neural network approach is
easily adapted to automated learning (e.g., training).

122 Regional Phase Identification (MIT/Lincoln Lab)

MIT/Lincoln Laboratory's neural network module for regional phase identification
was integrated in IMS, and was tested under operational conditions. We applied IMS
with and without the neural network to data recorded by the four European regional
arrays (ARCESS, NORESS, FINESA, and GERESS) during April, 1991. The results
of each run were compared to the analyst-reviewed solutions to estimate identification
accuracy of the neural networks.

The neural networks performed about 3.3% better than the rule-based component
in IMS for station processing. Much of this performance gain is due to more accurate
identification of Sn. However, after network processing (where data from all stations
are combined), the gain of the neural network drops to about 1.0%. Therefore, the final
event bulletin produced using the neural network in station processing is not much
different than the bulletin produced by the original rule-based system. For example,
95% of the 2142 events formed using the neural network are identical to events
formed with the rule-based system. The neural network did only slightly better than
the rule-based system on the 5% that were different. However, it is possible that higher
gains could be realized if network processing rules were improved (by incorporating
the phase identification confidence measures produced by the neural network).

1.2.3 Regional Event identifcation

A preliminary study involving a neural network technique for the identification of
regional events on the basis of broad-band envelope shape was carried out with 61
regional events recorded at GERESS. Close to perfect separation between earthquakes
and explosions could be achieved if both P and S envelopes were used. However, this
may be caused by propagation effects, rather than source differences. For example, all
of the earthquakes were to the south of the Alps, and these have small Lg phases
(probably due to structural blockage) relative to the mining explosions to the north of
GERESS. Using only P-coda envelopes, in the group velocity range 6.0-5.0 km/s,
close to 80% identification accuracy was obtained for the data set. In general, the
coda decay rate is lower for the earthquakes than it is for the explosions, although
there is much overlap. The neural network classifier utilized this difference in decay
rate for classifying the events.

3



1.3 Outline of the Report

This final report is divided into two volumes. Volume I is a description of Data
Sets #2-3 [Sereno, et al., 1992]. This report is Volume II of our final report. Section
2 presents the results of operational testing and evaluation of our initial phase
identification (P or S) neural network module. Section 3 describes the results
obtained from the operational testing of the regional phase identification (e.g., Pn, Pg,
Sn Lg, Rg) neural network module developed by MIT/Lincoln Laboratory. Section 4
describes our study on regional event identification from GERESS recordings. Our
conclusions regarding these neural network applications to automated interpretation of
regional seismic data are presented in Section 5.
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2. INITIAL PHASE ID NEURAL NETWORK MODULE

A neural network module was developed for automated initial identification of
seismic phases (P or S) based on polarization and context data from 3-component sta-
tions, and it was implemented in IMS. Details of the design, development and applica-
tion of the neural network technique are presented in Volume II of our annual report
[Patnaik and Sereno, 1991]. Brief descriptions of the development of this technique,
the results, and a comparison with the multivariate discriminant approach are repro-
duced in this final report. However, most of this section describes new results
obtained with the 3-component data from 6 IRIS/IDA stations in the former Soviet
Union, and the results obtained under operational testing of the neural network module.

2.1 Neural Network Development

2.1.1 Technique

In IMS station processing initial phase identification is done differently for array
stations and for single 3-component stations. For the array stations, the apparent phase
velocity (estimated from a broad-band F-K analysis) is used to separate detections into
Teleseism, Regional P, Regional S, or Noise [Bache, et al., 1990; Bache, et al., 19921.
In this case the identification is nearly perfect between P- and S-type phases. How-
ever, accurate estimates of phase velocity are not available for 3-component data.
Instead, automated phase identification is based on a combination of polarization data
and context using neural networks as pattern matchers [Patnaik and Sereno, 1991]. A
vector consisting of polarization and context data is treated as a pattern corresponding
to an analyst-identified phase (ground truth). A neural network is then designed and
trained using these patterns. Separate data sets are used for training and testing, so
that a well-generalized set of weights is obtained. Neural network parameters (like the
number of nodes in the middle layer) are problem-dependent and are estimated empiri-
cally. The derived neural network weights are station-dependent. That is, site-specific
characteristics are developed by deriving separate weights for each station. In addi-
tion, an empirically estimated confidence factor is provided for each phase
identification by the neural network.

2.12 Results

This neural network technique was initially tested by applying it to 3-component
data from the four high-frequency arrays (ARCESS, NORESS, FINESA, and
GERESS), a single 3-component stations in Ksiaz, Poland (KSP), and a 3-component
broad-band station in Garm (GAR), former Soviet Union. Neural networks performed
better than the current rule-based system in IMS, and better than a linear multivariate
technique applied to the same data (see the next section). The biggest improvement
was for signals with low snr. The percentage of correct identification for ARCESS
and NORESS was 92--99% for data with 3-component snr>2 and 86-96% for all snr.
We also applied this technique to data from each of the 3-component elements of the
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NORESS and ARCESS arays. Site-dependence was observed among these 3-
component array elements, and the identification accuracy varied from 80-92%. We
found that the networks trained with NORESS/ARCESS data achieved about 80%
identification accuracy when tested with data recorded at GAR. After retraining with
data from GAR, the accuracy increased by 10-15%. These reported results were
based on polarization data alone. We have since added context (e.g., relative number of
arrivals surrounding a detection and their relative arrival times) to the neural networks
and the results are typically 3-4% higher.

2.13 Comparative Study

There are several competing techniques that can be applied to the problem of
automated initial phase identification. In addition to the back-propagation neural net-
work approach, we applied the Learning Vector Quantization (LVQ) method to a test
data set from ARCESS and NORESS. The identification accuracy was 5-8% lower.
Suteau-Henson [1992a] and Riviere-Barbier, et al. [1992] reported automated initial
phase identification from polarization data (without context) for 3-component IRIS/IDA
stations. They used a multivariate discriminant analysis method to identify regional
and teleseismic P-type and S-type phases. Their identification accuracy was slightly
lower than the results of our neural network method reported here. Recently, Suteau-
Henson, [1992a] expanded her multivariate discriminant method to incorporate "noise"
detections as a separate class. She reports an average identification accuracy of about
75%. As expected, it was difficult to separate teleseisms from regional P phases, and
regional S phases from noise. We have not tried a similar experiment with the neural
network approach. However, we have done a direct performance comparison between
the neural network method and the multivariate discriminant analysis method on a
common set of NORESS and ARCESS data. The results indicated 3-7% higher accu-
racy by the neural network method [Patnaik and Sereno, 19911. Suteau-Henson
[1992b] expanded on this by comparing the neural network and multivariate confidence
estimates for cases where either method failed. She found that there is not much over-
lap in the failed sets, so it is possible that a combination of the two methods could
improve the overall phase identification accuracy (the confidence estimates would be
used to resolve conflicts).

2.1.4 Implementation in IMS

A software module was developed for automated initial identification of seismic
phases (P or 5) based on our neural network technique. This module was imple-
mented into a test version of the Expert System for Association and Location (ESAL)
which is a knowledge-based component of IMS [Bratt, et al., 1991; Bache, et al.,
19921. The implementation is shown schematically in Figure 1. The signal processing
component of IMS performs detection and feature extraction (arrival time, frequency,
amplitude, polarization parameters, etc). Only a few of these attributes are used by the
current rule-based system to identify each detection as a P -wave or as an S-wave from
3-component stations. This process is called initial phase identification in Figure 1.
This is where the rule-based method has been replaced by the neural network method.

6
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The next step is phase grouping which forms groups of phases that appear to be gen-
erated by the same event. This grouping is combined with the detection attributes to
identify regional phases (Pn, Pg, Px, Sn, Sx, Lg, or Rg) or teleseismic phases. Finally,
the phase associations are used to estimate single-station locations. The implementa-
tion of our neural network module has a provision to choose between the neural net-
work and the rule-based methods for initial phase identification to facilitate compara-
tive performance evaluation (see Section 2.4).

2.2 Data for Operational Test and Evaluation

Our data set for comparative performance testing consists of 1916 analyst-verified
events recorded by 6 IRIS/IDA stations in the former Soviet Union. The event epi-
centers and the station locations are shown in Figure 2. These events %- re formed by
combining data from the four high-frequency arrays in Eurme (ARCESS, NORESS,
FINESA, GERESS), a 3-component station in Ksiaz, Poland (KSP), and 6 IRIS/IDA
broad-band 3-component stations in the former Soviet Union [Ala-Archa (AAK), Arti
(ARU), Garm (GAR), Kislovodsk, Western Caucasus (KIV), Obninsk (OBN), and
Talaya (TLY)]. The analysis procedure and the resulting analyst-reviewed event bul-
letin are described by Swanger, et al. [1992]. The azimuths obtained from 3-
component data are not often reliable, and therefore, single-station events are not often
accurately located. However, the general concentration of seismicity closer to the sta-
tions is apparent in Figure 2. About 92% of the associated phases from these
IRIS/IDA stations that were used for training and testing of the neural networks had
snr>2, and most were from two of the stations, AAK and GAR. Figures 3-12 show
histograms of the data attributes for P-type and S-type phases from these 6 stations.
The number of P-type and S-type phases that are used from each station are shown in
parentheses, and range from only a few to several hundred. For example, there are
only 4 associated S-type phases at ARU. In addition to noticeable stations-dependence
in these data, these histogram distributions show considerable overlap for P-type and
S-type phases. Detailed descriptions of the polarization and context parameters are
given by Patnaik and Sereno 11991].
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2.3 Neural Network Training

The neural networks are trained with the input parameters described in the previ-
ous sections under the assumption that the phase labels assigned by an analyst are
ground trua. The neural network software module includes a provision for station-
dependent weights (e.g., separate weights derived from neural networks trained for
each station). However, only two of the IRIS/IDA stations had enough analyst-
reviewed data for reliable training and testing (AAK and GAR). For the remaining
four stations (ARU, KIV, OBN, TLY), we developed average weights by using data
combined from all 6 stations.

Figure 13 shows the schematic view of the resulting 3-layer neural network archi-
tecture (10-6-2) for the station GAR. The final weight configurations (the two weight
matrices) are derived by using the method described by Patnaik and Sereno [1991].
The equations shown to the right in Figure 13 determine the activation values at the
nodes when an input vector is fed-forward through a trained neural network. As
shown in this figure, the higher activation (0.99) of the P-output node implies that the
input vector for this detection is characteristic of a P-type phase.

Table 1 shows the adaptability of the neural network approach for initial phase
identification to data from new stations. The matrix is for the 6 IRIS/IDA stations and
the combined average case (denoted by IRIS in Table 1). The diagonal elements show
the average percentage of correct identification of the phases for training and testing
with data from the same station. The off-diagonal percentages are the results of adap-
tability testing. As it was seen earlier for the array stations [Patnaik and Sereno,
19911, the identification accuracy is about 10-15% higher if training and testing use
data from the same station. A trained network generally shows about 75-85% correct
phase identification accuracy if applied to data from a new site. Thus, the propagation
charac -eristics may be similar for all geological environments tested, to the extent that
75-85% of the detections have similar polarization and contextual characteristics. The
rest of the increase by 10-15% upon retraining may be attributed to the site-specific
characteristics of the 6 different regions in the former Soviet Union. Apart from this
general observation, it is noteworthy that even with the average weights, the actual
identification accuracy at any of the 6 IRIS/IDA stations remains close to 90%.
Another observation from these results is that even with few ground truh data (e.g., at
ARU, KIV, OBN, or TLY) a neural network can be trained and adapted to a new site
with close to 80% identification accuracy for the new data, which is significant from
the viewpoint of rapid deployment of monitoring stations. Enough data can be accu-
mulated for retraining within a few weeks of continuous station operation, and training
takes <30 minutes on a Sun Sparc Station.
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Table 1.

ADAPTABILITY TESTING FOR THE IRIS/IDA STATIONS
IN THE FORMER SOVIET UNION

(Average Percentages of Correct Identification of Both P-type and S-type Phases)
IRIS I AAK ARU GAR Krv

Train~ (2102) (805) 1 (82) (74o) (241) (71) (149)

M4IS "4."-'..97.1 92.2 94.2 90.7 88.5 91.8

AAI 88"-- 99.5 . - .. 0 86.5 76.6 78.2 83.6

'ARU 84.1 83.0 _. 100.0ý"•.7 79.2 81.5 84.6 71.4

GAR 92.0 94.4 93.9 "' 97.0 78 75.6 81.3

KIV 89.4 92.0 86.6 84.5"".. 99.2" •.83.3 90.6

OBN 84.4 84.1 93.9 79.7 81'..1000•.j'...3

TLY 80.9 80.0 79.3 83.9 82.3-

On average, 10-15% increase in correct identification occurs if the network for a station is retrained with
data from that station, as opposed to adapting weights from another station. The perfect accuracy
(100%) obtained for the stations ARU, OBN, and TLY is the artifact of too few training samples (ground

truths). The numbers in parentheses below each station denote the number of analyst-verified training
samples (P and S phases) available for that station.
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2.4 Results of Operational Testing

For operational test and evaluation, the IMS was applied to the 6-week period of
continuous data between 21 May 1991 and 30 June 1991. It was done twice; once
with the rule-based method for initial phase identification, and once using the trained
neural networks. The results of initial phase identification accuracy and the automated
event bulletins were compared to the analyst-produced bulletin.

In general, the neural network performed better than the rule-based method in
IMS by about 3-6%. For example, Table 2 shows the confusion matrices for the ini-
tial phase identifications for AAK, GAR, and all 6 IRIS/IDA station data combined.
The tables on the left show the results of the rule-based expert system (ES), and the
tables on the right show the results for the neural network (NN). These results are
also displayed graphically in Figure 14. The bar-graphs represent the results in per-
centages of correct identification of phases. The identification accuracy using the aver-
age weights (combined data from all stations) is not as high as it is for AAK and
GAR, but it is higher than it is in the current rule-based system. The average weights
will be replaced with station-specific weights as more analyst-reviewed data become
available (these data are currently being processed and analyzed at CSS). The final
identification accuracy is >95% for each individually-trained station.

The neural networks averaged 3.9% better than the ESAL rules for initial phase
identification for all 6 IRIS/IDA stations. However, it performed 6.3% better in identi-
fying P phases which are more important for teleseisms (P and S are about equally
important for regionals, but it is more important to identify P phases correctly for
events recorded at multiple stations). Table 3 shows the identification accuracy for P
phases, S phases and the average of both, for each of the 6 IRIS/IDA stations and for
all stations combined. For the stations ARU, KIV, OBN, and TLY, the average
weights were used for initial phase identification. These results are slightly different
from those shown in Table 1 because the data in the time interval used for our opera-
tional test was slightly different.

Table 4 shows the comparison of the event bulletins produced when the neural
network was used for initial phase identification (NN) and when the current IMS rule-
based expert system was used (ES). Close to 75% of the events in the ES and NN
bulletins are identical. Here we focus on the comparison of the other 25% to the
analyst-reviewed bulletin (AN). The NN bulletin was closer than the ES bulletin to
the AN bulletin. The most important difference is that only 2.1% of the analyst events
were missed by the NN, whereas 5.3% were missed by the ES. The difference is 61
events during the 6-week interval, or about 10 events/week. Also, more of the events
formed by the automated processing were accepted by the analyst when the neural net-
work was used for initial phase identification. The last row in Table 4 lists events that
were in the automated bulletin, but were not in the analyst bulletin. However, since
the analysis was restricted primarily to events recorded by at least two stations
[Swanger et al., 1992], it is not possible to determine how many of these are true
events as opposed to false-alarms.
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Table 2.

CONFUSION MATRICES

(Initial Phase Identification Neural Network)

AAK

ES NN
Analyst P S Total Analyst P S Total

P 515 17 532 P 527 5 532

S 10 264 274 S 3 271 274

Total 525 281 806 Total 530 276 806

GAR

ES NN
Analyst P S Total Analyst P S Total

p 379 61 440 P 429 11 440

S 4 29 301 S 11 290 301

Total 383 358 741 Total 440 301 741

6 IRIS/IDA Stations Combined
ES NN

Analyst P S Total Analyst P S Total

P 1.281 133 1,414 P 1,370 44 1.414

S 24 668 692 S 31 661 692

Total 1.305 801 2,106 Total 1.401 705 2.106
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Figure 14. Results of operational testing of the Neural Networks for initial phase

identification for 3-component stations in IMS. The vertical axis represents percentages
of correct identification. On the horizontal axis. ES denotes rule-based method and NN
denotes Neural Network method.
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Table 3.
NEURAL NETWORK VS. RULE-BASED INITIAL PHASE IDENTIFICATION

• ... T 1 i'• " 1 ' ' i :.:i ' :

Station AAK ARU GAR N ( KAU IRIS
Numbe I I IWI I (com b I ned

Total Num of P & S Phases (Ground Truths):

806 82 741 249 78 150 2,106

P% 99.0 93.6 97.5 93.6 92.4 94.5 96.9

S% 98.9 100 96.3 88.5 83.3 80 95.5

SAverage% 99.0 93.9 97.0 .92.4 1.0 90.7 98.4

V P% 96.8 91 86.1 86.2 80.3 91.8 90.6

S% 96.4 100 98.7 91.8 91.7 90 96.5

Average% 96.7 91.5 91.2 87.6 i 8.1 91.3 92.5

Table 4.

BULLETIN COMPARISON

(Initial Phase Identification Neural Network)

NEURAL NETWORK (NN) AND RULE-BASED (ES) VS. ANALYST

Analyst Action NN ES

Accepted 838 806

Modified 1,037 1,008

Added* 41 102

Rejected or Ignored 5.238 5.246

+ Only 15 of the analyst-verified events were missed by both the NN and the ES. There were 87 events in NN

that were not in ES and 32 of these were recorded at > 2 stations. There were 26 events in ES that were not
in NN, and 20 of these were recorded by Ž_ 2 stations.
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In summary, the increase in the phase identification accuracy provided by the
neural network technique also improved the final automated event bulletin (particularly
by reducing the number of events missed by the automated processing). The analyst
accepted more of the events formed by the automated system when the neural network
was used for initial phase identification, and fewer events were missed by the
automated processing. Larger gains are expected once enough data are available at all
IRIS/DA stations to derive a full set of station-specific weights. Also, the analysis
procedures only included events recorded at ý2 stations with at least 3 defining-phases,
so the test database is biased towards high snr (about 92% of the associated phases in
the test database had snr>2). The improvement offered by the neural networks is
greater for low snr, so larger gains are expected for routine analysis of data from all
stations.

27



3. REGIONAL PHASE ID NEURAL NETWORK MODULE

MrT/Lincoln Laboratory developed and trained a neural network for automated
identification of regional seismic phases recorded by high-frequency arrays under
DARPA's ANNT Program [Lacoss, et al., 1990; Lacoss, et al., 1992]. The purpose
was to improve the automated performance of the IMS by providing more accurate
regional phase identifications (e.g., Pn, Pg, Px, Sn, Sx, Lg, Rg). We developed a joint
plan with MIT/Lincoln Laboratory to implement, test and evaluate the performance of
their neural network module in IMS under operational conditions. In this section we
describe the implementation, and give results from our operational testing.

3.1 Technique

Figure 15 is a schematic diagram showing station-processing in IMS with the
inclusion of MIT/Lincoln Laboratory's neural network for final phase identification.
Most of the steps involved in station processing were described in Section 2. Themain point is that this neural network module is used in parallel with the current IMS
rule-based method to improve the accuracy of the phase identification. That is, the
detection attributes and the phase identification determined by the rule-based system
are input to the neural network. The output of the neural network is a refined phase
identification (with an associated measure of confidence). This refined phase
identification is used to estimate a more accurate single-array event location.
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SYSTEM INTEGRATION

(MIT/Lincoln Laboratory Regional Phase Identification Neural Network Module)

SINGLE-STATION PROCESSING

Detection Attributes

Initial Phase
Identification(P or S)

I

P/S Phases

Phase
Grouping

PS Associated Phases

3
Phase

Identification
(Rule-based)

1
4 Pn, Px, Pg, Sn, Sx, Lg, Rg

PhaseI__
Identification I -

(Neural Network)

Pn, Px, Pg, Sn, Sx, Lg, Rg

5Single-Station
Location

Figure 15. This is a sciemruitic diaira,n for Injle.station processing in IMS that include. the .\cural

Ncttvork approa,-.hfnr regicnai phase idee,,c•-at,,n istCp .) developed bh MIT Lincoln LaboratorN
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3.2 Data for Operational Test and Evaluation

Data recorded by the four European high-frequency regional arrays (ARCESS,
NORESS, FINESA, and GERESS) during April, 1991, were used for operational test
and evaluation. Table 5 lists the number of detections in the test data set for each
array. The first row lists the total number of detections, and the second row lists the
number of these that are associated with a regional event. Unfortunately, not all of
these have valid polarization or amplitude data in the IMS database at the Center for
Seismic Studies (CSS). The third row lists the subset of the associated detections that
had all data required for input to the neural network. Only about 9% of the total
number of detections recorded at the four arrays during April, 1991, could be used for
the operational test and evaluation of this module. This is because of the missing data
attributes, the nature of the problem being addressed, and the rigid structure of the
static neural networks that require fixed number of input parameters where missing
data attributes are not allowed. The last row in Table 5 lists the number of these
detections where the rule-based phase identification was different than the neural net-
work phase identification. This includes about 8.8% of the detections with valid data.

Table 5.

TEST DATA SET

(Regional Phase Identification Neural Nerwork)

April 1 - 30. 1991

All Sta. ARCESS NORESS FINESA GERESS

Total 37.075 I17038 6.735 7,831 5.471

Station assoc.
reg. phase 5.306 2.148 926 1.349 883 i

Valid data
(apma. sbsnr) 3.125 1 128 436 954 607

NN (phase) *

ES (phase) 274 144 31 60 39

N.%* .%euraNevt,ýyk
ES Rat't -,w ed Expe,'t S.stem

N.urt .e,'.Lvrk changes the r;p se m,'cr. 'iu ' . hr at -•'a 'i detecLtions • t;]h . x
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3.3 Results of Operational Testing

We tested MIT/Lincoln Laboratory's neural network for regional phase
identification under simulated operational conditions in an off-line version of IMS.
This was done by running ESAL (where the neural network module actually resides)
twice; once without the neural network for station processing (this is equivalent to the
normal operation), and once with the neural network. The results of each run were
compared to the analyst-reviewed solutions to estimate identification accuracy for each
regional phase, and to compare the automated event bulletins.

The overall phase identification accuracy achieved by the neural network is com-
pared to the results of the rule-based system in Table 6. The top half of the table lists
the results after station processing (IPHASE), and the bottom half lists the results after
network processing (PHASE). For this test, we only used detections with valid data
attributes and whose phase grouping was the same in the analyst bulletin as it was in
the pre-analyst (automated) bulletin. This gave about 2500 detections for the one-
month test period. The average phase identification accuracy for all stations after sta-
tion processing is 88.7% for the neural network which is about 3.3% higher than the
current rule-based system. The most improvement is for ARCESS where the
identification accuracy is 6.0% higher for the neural network than it is for the rule-
based system. However, the average gain achieved by the neural network drops to
about 1.0% after network processing. That is, some of the phases that are correctly
labeled by the neural network during station processing are incorrectly changed during
network processing. This also happens to a lesser extent for the rule-based system.
For example, the identification accuracies for FINESA and GERESS are reduced by
network processing. However, the opposite is true for ARCESS and NORESS (the
network processing rules were based primarily on data from these two arrays). It is
likely that greater overall improvement could be achieved by using the neural network
confidence estimates in network processing.

The phase identification confusion matrices, after station processing, for the
current IMS rule-based system and MIT/Lincoln Laboratory's neural network are
shown in Tables 7a and 7b, respectively. The numbers are expressed as a fraction of
the total number of phases (shown in the last column). The analyst's phase
identifications (ground truth) are shown on the left, and the labels determined by
automated processing are shown at the top. The diagonal elements indicate the frac-
tion of the total number of phases that were correctly identified by the automated
interpretation. The off-diagonal elements represent the fraction of phases that were
incorrectly identified. These tables combine data from all stations. Most of the
improvement offered by the neural network is in distinguishing between Sn and Sx,
and between Pg and Px. Px and Sx are regional P and S phases that are associated
with an event on the basis of slowness and azimuth, but are not associated with a
specific travel time branch (e.g., coda detections). Tables 8a and 8b show the confu-
sion matrices after network processing for the two methods of phase identification
(rule-based and neural network) in station processing. The Neural Network PHASE in
Table 8b is actually the final phase identification after the rule-based network
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Table 6.

OVERALL REGIONAL PHASE IDENTIFICATION ACCURACY

All Sta. ARCESS NORESS FINESA GERESS

Rule-based
IPHASE 85.4 81.2 86.1 88.6 86.3

Neural Net 88.7 87.2 87.8 90.5 88.8
IPHASE (+3.3%) (+6.00 /o) (+1.7%) (+1.9%) (+2.00/o)

Rule-based
PHASE 85.1 84.2 88.7 85.7 83.8

Neural Net 86.1 85.5 89.4 86.9 84.0
PHASE (+1.00%) (+1.3%) (+0.4%) (+1.2%) (+0.2%)
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Table 7a.
CONFUSION MATRIX FOR RULE-BASED PHASE IDENTIFICATION (II'LtASE)

DETERMINED DURING STATION PROCESSING

Average Accuracy = 85.4%

Analyst PHASE Rule-based IPHASE Number

(Ground Truth) Pn Pg Px Sn Lg Rg Sx of Data

Pn .97 .03 - - 702

Pg .06 .89 .04 - 471

PZ .13 .26 .62 - - - 86

Sn - .02 - .34 .33 - .31 178

Lg - .01 .91 .02 .06 941

Rg - .13 .77 .10 52

Sr - - .01 .04 .45 .04 .45 89

Number of Data 723 468 72 74 962 66 154 2.519

Table 7b.

CONFUSION MATRIX FOR NEURAL NETWORK PHASE IDENTIFICATION 4IPHASE)
DETERMINED DURING STATION PROCESSING

Average Accuracy = 88.7%

Analyst PHASE Neural Network IPHASE Number

(Ground Truth) Pn Pg Px Sn Lg Rg Sx of Data

Pn .97 .03 - - 702

Pg .06 .89 .05 - - 471

PZ .13 .17 .70 - - - 86

Sn - .02 - .69 .29 - - 178

L - - - .03 .94 01 .02 941

Rg - - - .29 .69 .02 52

Sx - .01 .11 .49 .08 .30 89

Number of Data 723 457 83 157 1,000 51 48 2.519
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Table 8a.
CONFUSION MATRIX FOR FINAL RULE-BASED PHASE IDENTIFICATION (PHASE)

DETERMINED DURING NETWORK PROCESSING

Average Accuracy = 85.1%

Analyst PHASE Rule-based PHASE Number

(Ground Truth) Pn Pg Px Sn LX Rg Sz of Data

Pn .94 .04 .02 - 540

Pg .01 .95 .03 - 436

PZ .04 .48 .48 - - - 69

Sn - .01 .01 .67 .24 - .07 169

Lg - - .05 .85 .03 .07 784

Rg - - .12 .88 - 41

Sx - - .01 .14 .32 .11 .42 81

Number of Data 517 472 60 163 736 69 103 2,120

Table 8b.
CONFUSION MATRIX FOR FINAL RULE-BASED PHASE IDENTIFICATION (PHASE)

DETERMINED DURING NETWORK PROCESSING

[when the Neural Network was used for phase identification during Station Processing

(i.e., for IPItASE of Table 7b)]

Average Accuracy = 86.1%

Analyst PHASE Neural Network PHASE Number
(Ground Truth) Pn Pg Pr Sn Lg Rg Sx of Data

Pn .94 .04 .02 541

Pg .01 .95 .03 436

PX .04 .49 .46 69

Sn .01 .01 .73 .21 - .03 168

Lg - .05 .87 .01 .06 787

Rg - - .32 .66 .02 44

Sx - - .01 .12 .36 .10 .41 81

Number of Data 518 473 59 171 767 48 90 2,126
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processing, where the neural network was used in suaion processing. The drop in
identification accuracy after network processing is primarily caused by incorrectly
renaming Lg to Sx. Depending on the number of defining phases, this may or may
not significantly affect the network location.

The automated event bulletins produced using the two methods for regional phase
identification are compared with the analyst event bulletin in Table 9. The final bul-
letin produced using the neural network (NN) is not much different from the bulletin
produced by the conventional rule-based system (ES). For example, 95% of the 2142
events formed using the neural network are identical to events formed with the rule-
based system. A comparison between the automated and analyst event bulletins (AN)
for the remaining 5% is shown in the bottom portion of Table 9. Only 7 events in the
AN bulletin were in the NN bulletin, and not in the ES bulletin. Similarly, 5 events in
the AN bulletin were in the ES bulletin, but not in the NN bulletin. There are 87
events that are in all three bulletins, but the ES location is not the same as the NN
location. The NN location is closer to the AN location than the ES location for only
slightly more than half of these. For example, the average difference in distance
between the AN location and the NN location for these events (ddist) is 103.9 kin, and
it is 135.4 km for the ES location. Therefore, the neural network did only slightly
better than the rule-based system on the 5% of the events that were different. How-
ever, we expect more improvement if the neural network confidence measures were
used in network processing.
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Table 9.

IIULLETIN COMPARISONS

(Regional Phase Identification Neural Network)

2.130 Events in ANALYST BULLETIN (AN)
2,142 Events in NEURAL NET BULLETIN (NN)
2,145 Events in RULE-BASED BULLETIN (ES)

2.031 Events where NN = ES (95%)

126 Events where NN t ES (5%)

* 12 Events in NN BULLETIN, but not in ES BULLETIN

- 7 are in AN BULLETIN

- 5 are not in AN BULLETIN

0 15 Events in ES BULLETIN, but not in NN BULLETIN

- 5 are in AN BULLETIN

- 10 are not in AN BULLETIN

* 99 Events are in ES and NN, but ES * NN

- 12 are not in AN BULLETIN

- 87 are in AN BULLETIN

47% have ES closer to AN than NN

53% have NN closer to AN than ES

Rule-based vs. Analyst

N 87

MEAN ddist 135.4 km

MEDIAN ddist = 43.8 km

MEAN dtlme = 16.5 s

MEDIAN dtime = 5.1 s

Neural Net vs Analyst

N = 87

MEAN ddist = 103.9 kmn
MEDIAN ddist = 28.2 km

MEAN dtime = 11.3 s
MEDIAN dtime = 2.9 s
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4. REGIONAL SEISMIC EVENT IDENTIFICATION

We conducted a preliminary study on the application of neural networks to iden-
tify regional events on the basis of their broad-band envelope shape. Patnaik L1989]
applied a similar approach to identify Love and Rayleigh surface wave trains from
single-station recordings of oceanic earthquakes. A neural network classifier based on
the envelope shape of these waves consistently performed perfect identification on
different test data. A number of recent studies [e.g., Dowla, et al., 1990; Dysart and
Puf/i, 1990; and Lacoss, et al., 1990; Patnaik, et al., 1990] report the use of neural
network classifiers for seismic event recognition with learning from previously known
patterns.

4.1 The Discriminant

It is observed that the coda decay rate is generally lower for earthquakes than it is
for explosions. For example, Su, et al., [1991] observe that the coda decay rate is
significantly higher for quarry blasts than for earthquakes at low frequencies (1.5 to 3
Hz) for lapse time up to about 30s. Although these observations were made from
carefully studied events at short epicentral distances, visual inspection of a large
number of seismograms recorded at GERESS from near-regional to far-regional dis-
tances from known mining regions and seismically active regions reveal a similar pat-
tern of coda decay rate. For example, Figure 16 shows an example of earthquake and
explosion recordings from GERESS. The epicentral distances are similar (490 km for
the earthquake, and' 350 km for the presumed explosion), and the shape of the P -coda
is much different. This simple observation motivated us to examine if we could utilize
this difference in the shape of the coda to discriminate between earthquakes and explo-
sions.
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4.2 Data

We developed and conducted preliminary tests of our neural network approach
using data from 61 regional events recorded at GERESS. Figure 17 shows the loca-
tions of these events and the location of the GERESS array. The solid circles
represent 35 presumed explosions at the Polish mining districts (e.g., Lubin and Dubna
Skala). Our ground truth is based purely on the assumption that events occurring near
these mining regions are probable explosions. However, it is possible that some of
these may actually be mining-induced earthquakes [e.g., Bennett et al., 1992; and Dr.
H-P. Harjes, personal communication]. Similarly the assumption of ground truh for
26 earthquakes (solid squares) is based on the general seismicity to the south of
GERESS. Although there is uncertainty in these assumptions (especially for the explo-
sions), more precise information is not currently available (e.g., local bulletins or
reports from mining agencies). Grant and Coyne [19921 are currently assembling a
database at CSS with this sort of information for this region, and we will retrain and
retest our neural networks once these information become available. The origin infor-
mation for these events, as produced by the IMS, are listed in Tables 10 and 11.

For each event, all vertical short period channel recordings (up to 25 array ele-
ments) from GERESS were used to construct 1-15 Hz incoherent beams (filter, rectify
and stack). These were resampled, smoothed and windowed for P and S phases.
Examples of these smoothed envelopes are shown in the bottom panel for each event
in Figure 16. The shape of P-wave coda was represented by smoothed envelopes in
the group velocity range 6.0-5.0 km/s. Figure 18 (top panel) shows the smoothed P -
coda envelopes for all of the presumed earthquakes. Similarly, Figure 18 (middle
panel) shows the P -coda envelopes for all of the presumed explosions. Visual inspec-
tion reveals a broad difference between the coda decay rate in the two populations,
although there is much overlap. The fall-off of P-coda amplitude with time appears
to be faster for the presumed explosion events (e.g., from mining areas in Poland) than
it is for the presumed earthquakes to the south of GERESS. Figure 18 (bottom panel)
is a superposition of all 61 envelopes used for neural network training.
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Figure 17. 6) events recorded at GERESS that are used for the even( identufication study. 3-5 of them are
presutmed to be explosions (solid circles) in nuining areas (e g. Lubin in Poland) and 26 are presumzed to be
earthquakes (solid squares) to the south of GERESS.
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T"ble 10. Bulletin of 26 Presumed EMINuakes Recorded at GERESS

ridl Origin Time LaUtude Longitude Depth ML nsta2 ndef Distance (kin)
16201 91 04 04 19:03:41.358 43.66 18.84 0.0 3.0 3 4 695.9
19060 91 04 24 13:21:53.893 36.89 14.98 0.0 4.0 4 4 1330.2
20199 91 0427 15:54:57.353 39.59 20.01 19.6 4.0 4 5 1141.7
20209 91 04 27 19M54:26.095 42.81 17.53 0.0 3.1 3 4 730.8
21392 91 04 29 21:38:12.061 43.50 18.56 0.0 3.2 4 5 699.8
30097 91 07 12 17:20-32.767 44.74 19.02 0.0 2.7 2 3 607.7
30933 91 07 17 00W.22:22.603 36.65 21.02 0.0 3.7 4 5 1478.0
30934 91 07 17 20:05:46.099 36.76 20.80 0.0 3.8 4 5 1459.2
31346 91 07 21 01:56:27.366 35.20 22.60 0.0 4.0 4 5 1680.7
31384 91 07 21 15:03:31.674 37.05 20.11 0.0 3.9 3 3 1407.4
31399 91 07 23 08:40:50.255 42.73 14.07 0.0 3.1 3 4 678A
31409 91 07 21 21:34:26.818 39.18 22.73 337.8 3.5 3 3 12903
31729 91 07 25 08:26:28.351 43.51 31.55 0.0 3.9 5 7 1491.8
32255 91 07 27 15:04:33.535 37.15 30.80 0.0 4.1 4 4 1893.9
32597 91 07 29 17:00:52.855 35.26 29.70 33.0 2.4 3 3 1996.7
33878 91 08 04 21:00:.14.844 39.45 17.12 0.0 2.7 3 3 1077.2
34118 91 08 06 15:04:40.125 44.92 21.97 0.0 3.0 5 6 762.9
34999 91 08 15 04:58:57.212 40.93 22.56 0.0 4.4 4 5 1119.6
36561 91 08 28 00W.03:37.872 44.57 15.34 0.0 3.5 2 5 489.4
36918 91 0827 22.02:59.829 38.74 15.73 0.0 3.4 4 5 1132.5
38618 91 09 07 14:00-22.884 44.80 12.98 0.0 2.7 1 3 450.1
38789 91 09 08 19:45:16.211 41.28 18.94 33.0 3.8 5 7 934.1
41650 91 09 25 13:21:22.543 37.04 16.12 0.0 3.9 4 4 1327.3
41656 91 09 25 14:53:25.760 36.30 14.83 0.0 4.1 4 4 1398.1
41671 910925 21:21:32.634 36.81 15.03 0.0 3.6 4 4 1342.1
41892 910927 19-30:08.057 36.19 21.07 0.0 4.1 5 4 1529.8

1. Origin ideatfication number.
2. The number of detecting sioas
3. The number of defining pha.m (number of phases used 1o locate dh event).
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Tabl II. Bulletin of 35 Presumed Explosions Recorded ai GERESS

orid' Origin Tume Lauude Loogiude De*x ML nstW ndef3  Distance (kn)

17185 91 04 07 08:35:12.681 51.64 15.96 0.0 2.3 4 8 351.9
17301 91 04 08 09:45:59.715 51.43 16.13 0.0 2.5 2 3 337.9
17658 91 04 11 19:31:13.357 51.59 16.52 0.0 2.4 4 6 367.5
17976 91 04 13 14:14:14.269 51.44 16.57 0.0 3.2 1 3 355.8
18742 91 04 18 04:37:39.429 51.63 15.87 0.0 2.8 3 5 348.0
19831 91 04 25 11:51:42.375 51.56 16.13 0.0 2.9 4 7 349.8
20297 91 04 30 03:40:36.346 51.55 16.33 0.0 3.0 4 5 356.2
20935 91 05 07 03.'02:44.265 51.48 16.44 0.0 2.7 4 7 354.5
31002 91 07 20 03:23:35.140 51.54 16.08 0.0 3.1 2 5 347.0
31364 91 07 21 13.:07.'07.938 51.51 16.11 0.0 1.7 3 9 345.1
31388 91 07 21 17:10:.50.781 51.43 16.06 0.0 1.9 3 6 335.7
31389 91 07 21 18:15:47.437 51.01 15.99 0.0 4.2 2 3 293.8
31416 91 07 21 22:50:41.171 51.60 16.22 0.0 1.8 4 8 357.3
31473 91 07 23 23:14.'01.328 50.28 19.35 0.0 2.6 5 8 438.8
31610 91 07 24 03:17:45260 51.64 16.02 0.0 2.7 5 8 354.2
32237 91 07 27 03.05.-04.988 51.51 16.08 0.0 1.6 4 8 343.8
32252 91 07 27 14.105:59.267 51.55 16.08 0.0 1.7 4 8 347.3
32441 91 07 28 23:32:43.213 51.52 16.13 0.0 2.3 5 7 347.0
32757 91 07 30 15:03:53.429 50.34 18.88 0.0 3.7 2 5 409.4
32766 91 07 31 07:28:39.391 51.50 15.99 0.0 2.6 5 10 339.7
34139 91 08 07 12:16:20.669 51.47 16.28 0.0 2.8 3 5 346.8
34702 91 08 08 20:02:42.161 51.62 16.22 0.0 3.1 2 5 359.0
34970 91 08 14 21:51-06.307 50.34 18.50 0.0 2.7 2 4 384.9
35458 91 08 12 19:26.09.176 50.21 18.97 0.0 2.6 3 6 410.3
35595 91 08 20 10*29:10244 50.53 15.66 0.0 4.2 1 3 236.4
36122 91 08 23 12:11:23.461 51.60 16.04 0.0 2.7 4 8 351.3
38301 91 0906 11:32:53.503 51.56 16.18 0.0 2.8 5 8 352.0
38411 91 09 06 20:25:29.833 50.87 18.99 0.0 3.0 2 3 442.4
39452 91 09 13 02:23:19.482 51.57 16.36 0.0 2.1 5 9 360.1
39461 91 09 13 08:38:27.730 51.02 15.93 0.0 2.6 2 5 291.8
39700 91 09 II 16:24:20.401 51.59 16.06 0.0 2.3 5 9 350.5
41769 91 09 27 11:31-05.590 51.61 16.21 0.0 3.0 2 4 355.6
41791 91 09 27 16V05:04.348 51.59 16.05 0.0 2.3 5 10 347.9
41792 91 09 28 00:37:52.142 51.51 16.25 0.0 2.5 5 9 348.0
41796 91 09 28 04.00:14.606 50.31 18.78 0.0 2.4 2 4 400.9

1. Origin ihnzificatmi number.
2. The number of desecting sations.
3. The number of €lefiwu pha=es (number of phases used so Iocase the even).
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FIare 18. The top panel is a superposition of all P-coda envelopes from 26 presumed
earthquak"es in the group velocity window 6.0-5.0 kn/s. The middle panel shows the same
from 35 presumed explosions, and the bottom panel is a superposition of all 61 envelopes.
These envelopes were used for neural network sunulanon for regional seismic evem
adenaficanon.
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4.3 Experiment, Results and Observations

Figure 19 is a schematic diagram showing the architecture of the neural network
method that we used for this study. The inputs to the neural network are the
envelopes of regional seismic phases (ranging in number of samples from 6-30). The
two output nodes represent the two event types. We added a middle layer of nodes;
however, the level of accuracy was almost the same as using only two-layers (e.g., a
single-layer perceptron). The results of our study are based on both types of networks.
The number of nodes on the middle layer was determined empirically using the
method described by Patnaik and Sereno [1991). Our final 3-layer networks used 6
nodes in the middle layer.

There are not enough samples in our GERESS event set to split the data set into
training and testing samples. Instead, we chose the leave-one-out approach to design-
ing the classifier. In this method, the first sample is excluded and training is done with
the remaining 60 samples. The first one is then used as a test sample. This is repeated
61 times, each time testing with the one left out. The score of percent correct
classification is obtained by counting the number of times the testing succeeded. In
this simplest case of cross v'alidation technique, the estimated error rate is the number
of wrong classifications divided by the total number of samples.

We experimented with both P- and S-wave envelopes in various group velocity
windows. We were careful to eliminate S-P time differences in our windowing and
resampling procedure. Nevertheless, differing source regions and propagation effects
on the shape of the coda, if any, could not be removed. For example, close to perfect
separation between earthquakes and explosions could be achieved if both P and S
envelopes were used. This is probably caused by propagation effects, rather than
source differences (e.g., many of the earthquakes had lower Lg amplitudes than the
presumed explosions which is probably due to structural blockage along paths that
cross the Alps).

Using only P -coda envelopes in the group velocity range 6.0-5.0 km/s, an
overall identification accuracy of 77% was obtained for the GERESS data set (Table
12). 81% of the presumed explosions, and 73% of the presumed earthquakes were
correctly identified. We conclude that the neural network classifier used the difference
in coda decay rate for classifying these events. However, the uncertainty in ground
truth prevents us from making any strong conclusions regarding the accuracy of the
classifier. Further work is clearly necessary to develop this approach once a reliable
ground truth data set becomes available [e.g., Grant and Coyne, 1992].
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Table 12.

RESULTS

"Leave-one-out" Technique. Estimated Error Rate = 0.23

"GROUND TRUTH" EXPL QUAKE

EXPL 81% 19%

QUAKE 27% 73%

Overall event identification accuracy = 77%
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5. CONCLUSIONS

We developed and implemented a neural network technique in IMS for automated
initial identification of seismic phases (P or S) recorded by 3-component stations based
on polarization and context data. The neural networks performed better than the
current IMS rule-based system for interpreting data obtained from the 3-component
IRIS/IDA stations in the former Soviet Union. The key advantages of the neural net-
work approach to automated initial identification of seismic phases recorded by 3-
component stations are:

"* Better performance than competing technologies. The neural network consistently
performed 3-6% better than both the current IMS rule-based system, and a linear
multi-variate statistical technique [Patnaik and Sereno, 1991].

The number of analyst events that were missed by automated processing is
decreased by a factor of 2, by using neural networks for initial phase ID
(about 10 events/week).

"* Extensibility. The neural network approach is easily extended to include new
features, which could be extremely difficult for a conventional rule-based system.

* Adaptability. The neural network is easily adapted to data from new stations. For
example, the identification accuracy (P or S) is 75-85% without retraining (e.g.,
using weights derived with data from a different station), and it is typically >95%
after retraining with data from the same station. Enough data can be accumulated
for retraining within a few weeks of continuous station operation, and training
takes <30 minutes on a Sun Sparc Station.

e Amenable to automated learning techniques. The neural network approach is
easily adapted to automated learning (e.g., training).

Under operational testing, the neural networks developed by MIT/Lincoln Labora-
tory for automated regional phase identification (e.g., Pn, Pg, Sn, Lg, and Rg), per-
formed 3.3% better in identifying these phases than the current rule-based system in
IMS for station processing. However, after network processing in the current system
(where data from all stations are combined), the gain dropped to about 1.0%. It is pos-
sible that higher gains could be realized if network processing rules were modified to
take advantage of the final phase confidence estimates from these neural networks.

Finally, our preliminary study on the application of neural networks to identify
regional seismic events on the basis of their broadband envelope shape gave about
77% identification accuracy on data recorded at GERESS. The assumption of ground
truth was that events clustered near the mining regions (e.g., Lubin in Poland) were
explosions, and that the events to the south of GERESS were earthquakes. In general,
the classifier utilized the coda decay rate which was lower for the earthquakes than it
was for the explosions, although there was substantial overlap.
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